009-矩阵乘法-分治法-《算法设计技巧与分析》M.H.A学习笔记

A、B是两个n*n的矩阵,计算C=A*B。
 

传统算法:

按照下面公式计算,需要n3次乘法和n3-n2次加法,时间复杂度为Θ(n3)。

递归算法:

假定n为2的幂,将A、B、C分成4个大小为(n/2)*(n/2)的子矩阵。


用分治法来计算C。

需要8次(n/2)*(n/2)矩阵的乘法和4次(n/2)*(n/2)矩阵的加法,其中乘法是原来的1/8倍消费,加法是原来的1/4倍耗费。用m表示n=1是乘法的耗费,用a表示加法的耗费。
于是有了下面的递推式:

可以推出:

同样需要n3次乘法和n3-n2次加法,与传统方法相比,时间复杂度没有改进,反而还增加了递归带来的管理开销。

Strassen算法:

复杂度为o(n3),运行时间渐进少于n3。
像递归方法一样划分矩阵,但在计算C的时候有一些不同。
首先计算出一些中间值:

再由这些中间值得出C:

Strassen算法进行了18次加法和7次乘法。对于运行时间有如下的递推式:

经过计算可得,运行时间为Θ(nlog7)=O(n2.81)。

三个算法的比较:

没有相关代码,但贴一个常用的矩阵类模板:

#include<iostream>
#include<stdio.h>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;

const int dim=20; //最高的维度,可调
int mod=1000000007; // 结果取的模,可调
int mk=5;// 运算时是运算几维矩阵的,可调

struct Matrix
{
    ll a[dim][dim];
    Matrix(){memset(a,0,sizeof(a));}
};


Matrix operator *(const Matrix& a,const Matrix& b)
{
    Matrix ret;
    for(int i=0;i<mk;++i)
        for(int j=0;j<mk;++j)
            for(int k=0;k<mk;++k)
            {
                ret.a[i][j]+=a.a[i][k]*b.a[k][j];
                ret.a[i][j]%=mod;
            }
    return ret;
}
Matrix operator ^(Matrix x, ll n)
{
    Matrix ret;
    for(int i=0;i<mk;++i)ret.a[i][i]=1;
    while(n)
    {
        if(n&1)ret=ret*x;
        x=x*x;
        n>>=1;
    }
    return ret;
}

int main()
{
    int a;
    cin>>a;
}

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这波lucio来全学了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值